Welcome to visit《 Journal of Air Force Engineering University 》Official website!

Consultation hotline:029-84786242 RSS EMAIL-ALERT
Inverse Covariance Intersection Fusion Robust Steady-State Kalman Filter
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Aimed at the problems that in distributed state estimation systems, the fusion methods are often employed to systematically combine multiple estimates of the state into a single, more accurate estimate, and if the correlation structure is unknown, conservative strategies are typically pursued with less accurate, an inverse covariance intersection fusion robust steady-state Kalman filter is proposed to gain more accurate estimate. As a major advantage of the novel approach, the fusion results prove to be more accurate than those provided by the well-known covariance intersection method. The geometric interpretation of the accuracy relations is given based on the covariance ellipses. A Monte-Carlo simulation example for a two-sensor system shows that its actual accuracy is close to that of the optimal Kalman fuser with known cross-covariance.

    Reference
    Related
    Cited by
Get Citation
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:
  • Revised:
  • Adopted:
  • Online: June 06,2019
  • Published:
Article QR Code