摘要:针对深度学习模型中对抗样本迁移性和黑盒攻击能力不足的问题,研究设计了一种基于NadaMax优化器的迭代快速梯度方法(NM-FGSM)。该方法结合了Nesterov加速梯度和Adamax优化器的优势,通过自适应学习率和前瞻动量向量提高梯度更新精确度,并引入动态正则化增强问题凸性,优化算法稳定性和针对性。实验结果表明,NM-FGSM 在不同攻击策略下优于现有方法,尤其在先进防御场景中攻击成功率提高了4%~8%。通过动态正则化的损失函数,对抗样本的跨模型迁移能力得到提升,进一步增强了黑盒攻击效果。最后,讨论了未来优化NM-FGSM 算法和设计防御措施的研究方向,为深度学习模型的安全性研究提供了新的思路。