欢迎访问《空军工程大学学报》官方网站!

咨询热线:029-84786242 RSS EMAIL-ALERT
基于YOLOv8的红外无人机小目标检测研究
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TN391.41

基金项目:

国家自然科学基金(62002362,61703426);陕西省高校科协青年人才托举计划(2019038);陕西省创新能力支持计划(2020KJXX-065


Research on Small Target Detection of Infrared UAV Based on YOLOv8
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    红外目标检测是无人机反制技术常用的一种手段。针对复杂环境下红外小目标图像特征不明显,常淹没在噪声中的问题,提出了一种改进的YOLOv8目标检测模型。首先,引入注意力机制,自适应调节感受野大小;其次,构建小目标检测层,更加关注网络的浅层信息,增强细粒度特征提取能力;最后,使用深度可分离卷积改进检测头,提高检测准确度的同时更加轻量化。实验结果表明,与原YOLOv8模型相比,精确率、召回率、mAP50、mAP50-95分别提升了5.3%、8.1%、9.1%、21.1%,在无人机小目标检测中取得了很好的效果。

    Abstract:

    Infrared target detection is a commonly used means to UAV countermeasure technology. Aimed at the problems that infrared small target image is not obvious in feature and is often submerged in noise under conditions of complex environments, an improved YOLOv8 target detection algorithm is proposed. Firstly, the introduction of an attention mechanism into research is utilized for adaptively adjusting the size of the receptive field. Secondly, a small target detection layer is constructed to pay more attention to the shallow information of the network, enhancing the ability of finegrained feature extraction. Finally, the detection head improved by depth separable convolution is used to improve the detection accuracy and to simultaneously become even more lightweight. The experimental results show that the precision rate, recall rate, mAP50 and mAP50-95 are improved by 5.3%, 8.1%, 9.1% and 21.1% respectively in comparison with the original YOLOv8 algorithm. The result comes off well in the detection of small targets by UAV.

    参考文献
    相似文献
    引证文献
引用本文

李燕, 曲毅, 胡健生.基于YOLOv8的红外无人机小目标检测研究[J].空军工程大学学报,2025,26(3):106-111

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-06-04
  • 出版日期: