欢迎访问《空军工程大学学报》官方网站!

咨询热线:029-84786242 RSS EMAIL-ALERT
基于改进贝叶斯网络的察打一体无人机使用安全评估
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

V279

基金项目:

国家自然科学基金(72271243);国家社会科学基金重点项目(21AGL030)


An Assessment on Use and Safety of Reconnaissance-Strike UAV Based on Improved Bayesian Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对察打一体无人机作战任务复杂多样、测试数据难以获取、安全评估主观性强等问题,提出一种改进的贝叶斯网络模型,旨在通过该模型评估察打一体无人机的使用安全。根据察打一体无人机的作战特点,将其划分为5个作战阶段,识别不同阶段使用过程中的安全风险因素,构建强对抗环境下察打一体无人机使用安全评估指标体系。基于指标体系,确定贝叶斯网络的拓扑结构,利用熵值法改进G1法求得根节点的先验概率,利用EM 算法得到子节点的条件概率。最后,将数据导入GeNIe软件进行仿真,得到察打一体无人机不同使用安全等级的概率分布,并对模型进行逆向推理,明确导致察打一体无人机发生安全事故的关键因素。

    Abstract:

    Aimed at the problems that reconnaissance-strike UAV is complex and diverse in combat tasks, difficult to obtain test data, and strong subjectivity in safety evaluation, an improved Bayesian network model is proposed to evaluate the deploying safety of the reconnaissance-strike UAV. According to the operational characteristics of the reconnaissance-strike UAV, five operational stages are divided, the safety risk factors in the use of different stages are identified, and the deploying safety evaluation index system of the reconnaissance-strike UAV in the strong confrontation environment is constructed. Based on the index system, the topological structure of Bayesian network is determined. The entropy method is utilized for improving the G1 method to obtain the prior probability of the root node, and the EM algorithm for obtaining the conditional probability of the child node. Finally, the data is imported into the GeNIe software for simulation, and the probability distribution of different use safety levels of econnaissance-strike UAV is obtained. The reverse reasoning of the model is carried out to identify the key factors that lead to the safe ty accidents of the reconnaissance-strike UAV.

    参考文献
    相似文献
    引证文献
引用本文

周昱林, 刘树光, 王柯.基于改进贝叶斯网络的察打一体无人机使用安全评估[J].空军工程大学学报,2025,26(3):86-95

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-06-04
  • 出版日期: