欢迎访问《空军工程大学学报》官方网站!

咨询热线:029-84786242 RSS EMAIL-ALERT
基于时频特征融合和无锚检测机制的高效话音信号检测框架
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TN92

基金项目:

国家自然科学基金(62276206);航空科学基金(2023Z071081001)


An Efficient Voice Signal Detection Framework Based on Time-Frequency Feature Fusion and Anchor-Free Detection Mechanism
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    基于深度学习的宽带信号检测框架将目标检测与时频图结合,能够实现宽带射频系统中多信号的检测、识别和时频定位。然而直接迁移使用原始网络架构难以在实际任务数据集上达到最优信号检测性能。针对这一问题,提出了一种面向话音信号检测任务的网络架构SignalNet。结合话音信号及任务数据集的特点对网络进行了解耦和任务导向的优化,分别精简了用于特征提取的骨干网络、设计了具有多尺度时频特征上下文融合以及门控注意力组件的颈部网络,同时将传统的有锚检测头替换为无锚机制。实验结果表明,所提网络架构在话音信号检测任务上达到最优检测性能,不仅取得了97.42%的mAP值,同时具有更少的模型参数和更快的推理速度。

    Abstract:

    Wideband signal detection framework enables to realize detection, identification, and time-frequency localization of multiple signals in the wideband RF systems with object detection being combined with spectrograms based on deep learning, whereas directly applied original network architecture is difficult to achieve optimal signal detection performance on actual task datasets. For the above-mentioned reasons, this paper proposes a network architecture, SignalNet, for voice signal detection task, which is decoupled for task-oriented optimization according to the characteristics of the voice signals and task dataset. Specifically, the backbone network is streamlined, which is responsible for feature extraction, a neck network that comprises the multi-scale time-frequency feature context fusion and gating attention modules is introduced, and the traditional anchor-based detection head is replaced with an anchor-free one. The experimental results show that the proposed network architecture achieves the optimal detection performance for the voice signal detection task, mAP reaches not only 97.42%, but also is in maintaining fewer model pa rameters and faster inference speed.

    参考文献
    相似文献
    引证文献
引用本文

李春辉, 向新, 杨思力, 律国仓, 魏景璇, 李桥.基于时频特征融合和无锚检测机制的高效话音信号检测框架[J].空军工程大学学报,2025,26(3):26-34

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-06-04
  • 出版日期: