欢迎访问《空军工程大学学报》官方网站!

咨询热线:029-84786242 RSS EMAIL-ALERT
SAR-LAM:面向小样本SAR目标识别的轻量化适应策略
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP183

基金项目:

国家自然科学基金(61876189,61703426,61806219)


SAR-LAM: A Lightweight Adaptation Method Being Geared to Few-Shot SAR Target Recognition
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对小样本学习中跨域迁移导致模型性能下降的问题,提出一种面向小样本SAR目标识别的轻量化适应策略(SAR-LAM)。该方法通过知识蒸馏预训练一个具有泛化性能的通用编码器,向其中嵌入一个只在少量目标域样本上进行训练的适应模块,而后将提取的特征映射到一个分辨性更高的空间内,最终以原型网络为基线对查询集样本进行分类。该适应策略以增加少量学习参数为代价,克服了数据分布差异导致模型迁移受限的困难,增强了模型在目标域提取特征的能力,在小样本条件下将SAR目标识别的准确率提升了至少1.93个百分点,较其他方法展现出一定的优越性。

    Abstract:

    In view of the issue of model performance degradation caused by cross-domain transfer in fewshot learning, a lightweight adaptation strategy for few-shot SAR target recognition named SAR-LAM is proposed. This method is to utilize knowledge distillation for pre-training a generalized encoder and embedding an adaptation module trained only with very few target domain samples. The extracted features are then mapped into a more discriminative space, and finally, the query set samples are classified by taking a prototypical network as the baseline. This adaptation strategy is to increase at a few cost in learning parameters, and by so doing, the limitations of model transfer caused by data distribution differences is overcome, improving the model’s ability to extract features in the target domain, and simultaneously improving the accuracy of SAR target recognition by at least 1.93 percentage points under few-shot conditions. And this adaptation strategy is superior in performance to the other methods.

    参考文献
    相似文献
    引证文献
引用本文

史松昊, 王晓丹. SAR-LAM:面向小样本SAR目标识别的轻量化适应策略[J].空军工程大学学报,2024,25(3):103-111

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-05-30
  • 出版日期: