欢迎访问《空军工程大学学报》官方网站!

咨询热线:029-84786242 RSS EMAIL-ALERT
基于注意力机制的CNN-LSTM模型的航迹预测
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP391

基金项目:


Real-Time Track Prediction of CNN-LSTM Model Based on Attention Mechanism
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    基于数学模型或统计模型的传统航迹预测方法存在一定的局限性,无法满足现代航空领域对于高效、准确、实时的航迹预测需求。针对此问题,提出基于注意力机制的CNN-LSTM模型的实时航迹预测方法。该模型首先使用一维卷积对航迹数据的多维度特征进行提取,从而减少输入特征的数量。其次利用获取的多维度时序数据作为LSTM的输入,通过LSTM提取上下文的信息。最后使用注意力机制为LSTM中不同时序节点的输出赋予权重,达到聚焦关键航迹信息的作用。经过实验验证:本文的模型与LSTM模型和CNN-LSTM模型相比,预测出的路径更接近真实航迹;文中的模型比LSTM模型的平均预测误差降低了29.7%,比CNN-LSTM模型降低了25.4%。综上所述,文中方法可以显著提高航迹预测的精度。

    Abstract:

    Aimed at the problems that traditional trajectory prediction methods based on mathematical or statistical models have a certain of inherent limitations and are difficult to meet increasingly the demands of efficiency, accuracy, and real-time trajectory prediction in the modern aviation field, a novel real-time trajectory prediction method is proposed based on a CNN-LSTM model with an attention mechanism. The proposed model is that multidimensional features are extracted from trajectory data by one-dimensional convolution, reducing the number of input features. Taking the resulting multidimensional time-series data as an input of LSTM, the contextual information can be extracted by LSTM. Moreover, an attention mechanism is employed to assign weights to output from different time-series nodes within the LSTM, focusing on key trajectory information. The experimental validation shows that the proposed model in comparison with the LSTM model and the CNN-LSTM model, produces trajectory predictions to be even more close to match real trajectories. Specifically, the model in this paper achieves a 29.7% reduction in average prediction error compared to the LSTM model and a 25.4% reduction compared to the CNN-LSTM model. In summary, the proposed method significantly enhances the accuracy of trajectory prediction.

    参考文献
    相似文献
    引证文献
引用本文

王堃,周志崇,曲凯,曹明松,胡延达.基于注意力机制的CNN-LSTM模型的航迹预测[J].空军工程大学学报,2023,24(6):50-57

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-12-25
  • 出版日期: