欢迎访问《空军工程大学学报》官方网站!

咨询热线:029-84786242 RSS EMAIL-ALERT
基于BiTCNSA的恶意代码分类方法
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP393.08

基金项目:

国家自然科学基金(61806219, 61703426, 61876189);陕西省自然科学基金(2021JM-226);陕西省高校科协青年人才托举计划(20190108, 20220106);陕西省创新能力支撑计划(2020KJXX-065)


A Malicious Code Classification Method Based on BiTCNSA
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    当前恶意代码的对抗技术不断变化,恶意代码变种层出不穷,使恶意代码分类问题面临严峻挑战。针对目前基于深度学习的恶意代码分类方法提取特征不足和准确率低的问题,提出了基于双向时域卷积网络(BiTCN)和自注意力机制(Self-Attention)的恶意代码分类方法(BiTCNSA)。该方法融合恶意代码操作码特征和图像特征以展现不同的特征细节,增加特征多样性。构建BiTCN对融合特征进行处理,充分利用特征的前后依赖关系。引入自注意力机制对数据权值进行动态调整,进一步挖掘恶意代码内部数据间的关联性。在Kaggle数据集上对模型进行验证,实验结果表明:该方法准确率可达99.75%,具有较快的收敛速度和较低的误差。

    Abstract:

    At present, the countermeasure technology of malicious code is constantly changing, and new varieties of malicious code are emerging in endless streamto make the classification of malicious code face severe challenges. Aimed at the problemsthat features extracted are insufficient and low in accuracy by using current malicious code classification methods based on deep learning, a malicious code classification method (BiTCNSA) based on bi-directional temporal convolution network (BiTCN) and self attention mechanism is proposed. This method is combination of opcode features with image features to show different feature details, increasing feature diversity. The BiTCN is constructed to process the fused features, making full use of the pre and post dependencies of the features. The self attention mechanism is introduced todynamically adjust the data weight, further mining the correlation between the internal data of malicious code. The model is verified by using the Kaggle data set. The results show that the accuracy of this method can reach 99.75%, and the method is fast at convergence speed, lowin error, and better than the other models.

    参考文献
    相似文献
    引证文献
引用本文

黄玮, 王坚*, 吴暄, 李思聪.基于BiTCNSA的恶意代码分类方法[J].空军工程大学学报,2023,24(4):77-84

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-08-22
  • 出版日期: