欢迎访问《空军工程大学学报》官方网站!

咨询热线:029-84786242 RSS EMAIL-ALERT
基于随机有限集的视频SAR多目标跟踪方法
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TN953

基金项目:

国家自然科学基金 (61201308)


Research on Video SAR Multi-Objective Tracking Method Based on Random Finite Set
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    视频合成孔径雷达具有高分辨与高帧速率成像的特点,可以连续获取地面感兴趣区域目标近似视频的信息, 为基于SAR图像的目标识别与跟踪技术的快速发展奠定了基础。为了满足日益复杂的应用需求,多目标跟踪技术逐渐发展成熟,针对多目标跟踪过程中每个运动目标的状态都具有空时变性,并且目标的数量具有随机性的难题,首先建立了基于随机有限集的多目标跟踪算法,在此基础上讨论了贝叶斯框架下的概率假设密度算法,并在高斯混合模型下研究并实现了高斯混合概率假设密度滤波算法,进而实现了基于RFS的多目标跟踪算法,在复杂环境背景下验证了该算法的有效性。

    Abstract:

    Being characterized by high resolution and high frame rate imaging, Video Synthetic Aperture Radar (ViSAR) can continuously obtain the approximate video information showed interest in targets in the area on the ground, laying a foundation for the rapid development of target recognition and tracking technology based on SAR images. In order to meet the increasingly complex application requirements, the multi-target tracking technology has gradually developed and matured. Aimed at the problems that the state of each moving target in the process of multi-target tracking has space-time variability, and the number of targets has randomness, a multi-target tracking algorithm is established based on the Random Finite Set (RFS). On this basis, the Probability Hypothesis Density (PHD) algorithm under the Bayesian framework is discussed, and the Gaussian Mixture Probability Hypothesis Density (GM-PHD) filtering algorithm is studied and implemented under condition of the Gaussian mixture model, and then the RFS-based multi-target tracking algorithm is further implemented. The results show that the algorithm is valid under condition of the complex environment background.

    参考文献
    相似文献
    引证文献
引用本文

陈李田, 张云, 李宏博, 王勇.基于随机有限集的视频SAR多目标跟踪方法[J].空军工程大学学报,2023,24(2):77-82

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-05-05
  • 出版日期: