欢迎访问《空军工程大学学报》官方网站!

咨询热线:029-84786242 RSS EMAIL-ALERT
等离子体协同射流翼型控制参数设计与机理探索
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

V211.4

基金项目:

国家自然科学基金(12072284,11672245); 国家级重点实验室基金(9140C420301110C42)


A Design of Influence of Relevant Geometric Parameters over Plasma Co-Flow Jet Airfoil and Flow Control Mechanism Exploration 
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    通过风洞实验和数值模拟方法研究了相关几何参数对等离子体协同射流翼型绕流特性与气动力特性的影响,并对流动控制机制进行了阐述。设计了不同高度的腔道,研究了等离子体激励下腔道出口的流量与射流速度的变化规律,最终选取4 mm腔道高度为最优参数, 设计了以NACA0025为基准翼型的等离子体协同射流翼型。通过数值模拟研究了等离子体协同射流翼型的升/阻力特性,并对比了前缘吹气与协同射流控制的不同控制效果。研究结果表明,Re=68 000、峰-峰值电压13 kV、载波频率8 kHz条件下,相对基准翼型,等离子体协同射流翼型将失速迎角从8°提高到了14°,最大升力系数增加了181%。等离子体协同射流翼型的阻力随迎角增大持续减小,在10°迎角之前其阻力大于基准翼型,随后小于基准翼型,升阻比呈现出与阻力相同的变化特性,10°迎角之后全面优于基准翼型。原因是后缘腔道处在较小迎角下产生了正阻力,而随着迎角的增大,其当地阻力变为负值。对比前缘吹气和协同射流控制,翼型失速迎角分别为12°和16°,这是因为协同射流翼型通过前缘吹气效应可以在当地集中注入动量,其后缘吸气可以减小低能量的分离区域,形成较大的环量增量。

    Abstract:

    The influence of relevant geometric parameters on the flow characteristics and aerodynamic characteristics of the plasma jet airfoil is studied by wind tunnel experiments and numerical simulation methods, and the flow control mechanism is described. Slots at different heights are designed, and flow rate and jet velocity at the outlet of the slot under plasma excitation are studied. The slot of 4 mm being selected as an optimal parameter,and a plasma co-flow jet airfoil is designed by taking NACA0025 as a referenced airfoil. The lift or drag characteristics of the plasma co-flow jet airfoil are studied by numerical simulation. The results show that Re being equal to 68 000,  Up-p being equal to 13 kV, and f being equal to 8 kHz, the stall angle of attack increases from 8°to 14°, and the maximum lift coefficient is increased by 181% compared with the reference airfoil. The drag of the plasma jet airfoil decreases continuously with the increase of the angle of attack. Prior to an angle of attack of 10o, the drag is greater than the reference airfoil, and then smaller than the reference airfoil. The lift-drag ratio result shows the same variation characteristics as the drag and is better than the reference airfoil beyond the angle of attack of 10o because the trailing edge slot generates a positive drag at a small angle of attack, and the local drag becomes negative as the angle of attack increases. In contrast to the only leading edge blowing, the co-flow jet can increase the stall angle of attack from 12° to 16° because the co-flow jet airfoil can inject momentum locally through the blowing effect on the leading edge, and the suction effect on the trailing edge can reduce the low energy separation area to increase circulation.

    参考文献
    相似文献
    引证文献
引用本文

李天阳, 张鹤翔, 冉卓灵, 孟宣市*, 史爱明.等离子体协同射流翼型控制参数设计与机理探索[J].空军工程大学学报,2023,24(2):23-32

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-05-05
  • 出版日期: