欢迎访问《空军工程大学学报》官方网站!

咨询热线:029-84786242 RSS EMAIL-ALERT
一种不同色域空间下的无监督图像分割技术
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP957.52

基金项目:


A Kind of Unsupervised Segmentation Technique in Different Color Space
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对图像分割有监督学习模型训练时间长、需要大量训练样本才能确保模型精度要求且样本标记费时费力的问题,提出了在不同色域空间下基于神经网络的无监督图像分割方法。首先将图像进行不同颜色空间模型转化,得到不同色域空间下图像的颜色表示;其次利用felz和quickshift方法,对转换后的图像进行粗粒度聚类,形成超像素结果,并对每个像素打上相应的标签;最后利用神经网络细粒度的图像特征分辨能力进行微调,得到最终的图像分割结果。该方法在公开的COD10K等数据集上选取了数据集进行验证,实验表明,文中方法能够对图像进行合理分割,且与有监督长时间训练过程相比,无监督的推理耗时大大缩短,速度显著提高。

    Abstract:

    Aimed at the problems that the supervised learning model for image segmentation is long in training time, a large number of training samples is needed to ensure model accuracy requirement, and the labeling takes a lot of work, time and energy, an unsupervised image segmentation method is proposed based on neural network in different color space. Firstly, the images are transformed into different color space models to obtain the color representation of images in different color gamut spaces, and then by using felz and quickshift methods, a coarsegrained cluster is made after the images being transformed to form superpixel results and label each pixel accordingly. Finally, the finegrained image feature discrimination ability of neural networks is utilized for making a fineturning, obtaining the final image segmentation results. The method is validated on publicly available datasets such as COD10K selected, and the experiments prove that the proposed method can segment images reasonably with less inference time consumption and faster speed in comparison with the supervised training for a long time.

    参考文献
    相似文献
    引证文献
引用本文

吴涛, 王伦武, 王伦文, 朱敬成.一种不同色域空间下的无监督图像分割技术[J].空军工程大学学报,2022,23(1):104-111

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-04-05
  • 出版日期: 2022-02-25