欢迎访问《空军工程大学学报》官方网站!

咨询热线:029-84786242 RSS EMAIL-ALERT
循环神经网络辅助GNSS/SINS组合导航方法及性能分析
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TN967.2

基金项目:

国家自然科学基金(61973314)


An Analysis of Method and Performance for GNSS/SINS Integrated Navigation Assisted by Recurrent Neural Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对GNSS信号中断时组合导航系统误差迅速发散的问题,提出了使用循环神经网络(RNN)来辅助组合导航系统的方法,RNN可以分别基于当前和过去的位置以及速度样本进行训练,使神经网络更好地处理系统中的时序信号,从而能够更加精确地预测SINS的位置和速度误差。采用无人机飞行试验数据验证了该算法在卫星信号中断时导航精度平均提升了77%,并且满足导航所需的实时性要求,与传统的径向基神经网络辅助的组合导航系统相比,其位置和速度的均方根误差平均降低了39%。

    Abstract:

    Aimed at the problems that integrated navigation system is rapid divergent in error when global navigation satellite system (GNSS) signal is interrupted, most of the current methods are to adopt fully connected neural network, but this can only deal with the mapping relationship between input and output at a single moment with being ignorant of the dependence of errors on the past values of strapdown inertial navigation system (SINS), a method of using recurrent neural network (RNN) to assist the integrated navigation system is proposed. RNN can train on the basis of the current and past position and speed samples respectively, so that the neural network can better process the timing signals in the system, and predict the position and speed errors of SINS more accurately. UAV flight test data are adopted to verify the method. The result shows that the navigation accuracy of this algorithm is increased by 77% on average when the satellite signal is interrupted, and this meets the realtime requirements required by navigation. Compared with the traditional RBF neural network assisted integrated navigation system, the root mean square error of its position and velocity is reduced by 39% on average.

    参考文献
    相似文献
    引证文献
引用本文

闫世霖,吴德伟,王伟,戴传金,朱浩男.循环神经网络辅助GNSS/SINS组合导航方法及性能分析[J].空军工程大学学报,2021,22(5):61-66

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2021-12-02
  • 出版日期: