欢迎访问《空军工程大学学报》官方网站!

咨询热线:029-84786242 RSS EMAIL-ALERT
基于GhostDenseNetSE的恶意代码检测方法
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP309

基金项目:

malicious code; lightweight convolutional; densely connected network; channel domain attention mechanism


A Malicious Code Detection Method Based on GhostDenseNetSE
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对现有恶意代码检测模型对恶意代码及其变种识别率不高,且参数量过大这一问题,将轻量化卷积Ghost、密集连接网络DenseNet与通道域注意力机制SE相结合,提出一种基于GhostDenseNetSE的恶意代码家族检测模型。该模型为压缩模型体积、提升识别速率,将DenseNet中的标准卷积层替换为轻量化Ghost模块;并引入通道域注意力机制,赋予特征通道不同权重,用以提取恶意代码的关键特征,提高模型检测精度。在Malimg数据集上的实验结果表明,该模型对恶意代码家族的识别准确率可以达到99.14%,与AlexNet、VGGNet等模型相比分别提高了1.34%和2.98%,且模型参数量更低。该算法在提升分类准确率的同时,降低了模型复杂度,在恶意代码检测中具有重要的工程价值和实践意义。

    Abstract:

    Aimed at the problems that the existing malicious code detection model is iow in recognition rate of malicious code and its variants, and the amount of parameters is too large, a method of Malicious code family detection model is proposed based on GhostDenseNetSE is proposed in combination with the lightweight convolutied Ghost, densely connected network DenseNet and the channel domain attention mechanism SE. This model serves as a type of compressing the model volume and improving the recognition rate. the standard convolutional layer in DenseNet is replaced with a lightweight Ghost module, and the channel domain attention mechanism is introduced to assign different weights to the feature channels to extract the key features of malicious code and improve model checking accuracy. The experimental results on the Malimg data set show that the models recognition accuracy of malicious code families can reach 9914%, Compared with AlexNet and VGGNet, the recognition accuracy increases by 1.34% and 2.98% respectively, and the amount of model parameters is lower. This algorithm not only improves the classification accuracy, but also reduces the complexity of the model. The algorithm has important engineering value and practical significance in malicious code detection.

    参考文献
    相似文献
    引证文献
引用本文

李怡,李进.基于GhostDenseNetSE的恶意代码检测方法[J].空军工程大学学报,2021,22(5):49-55

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2021-12-02
  • 出版日期: