欢迎访问《空军工程大学学报》官方网站!

咨询热线:029-84786242 RSS EMAIL-ALERT
基于DenseNet的机载雷达动目标检测
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP391.4

基金项目:

国家自然科学基金(62001507)


Airborne Radar Moving Target Detection Based on DenseNet
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对传统机载雷达运动目标检测方法所需训练距离单元较多的问题,将运动目标检测问题转化为多分类问题。首先,基于少量训练距离单元数据构建分类所需的训练数据集;然后,基于卷积神经网络DenseNet构建多类分类器;最后,利用训练后的分类器提取雷达空时回波数据特征,进行目标检测和参数估计。仿真结果表明:基于DenseNet的机载雷达动目标检测方法能够有效检测目标,估计目标的距离、多普勒频率等参数。相比传统空时自适应处理方法,该方法能够显著减少所需训练距离单元数量;相比现有基于分类的目标检测方法,该方法能够有效提高目标检测和参数估计的准确度。

    Abstract:

    Aimed at the problem that conventional moving target detection methods for airborne radar always need many training range samples, there is an adaptation, i.e. transforming the target detection problem into a multiclassification problem. Firstly, the training dataset is constructed based on a small amount of training range samples, and then, a multiclass classifier is constructed based on DenseNet. Finally, the trained classifier is utilized for extracting the characteristics of the received spacetime data for target detection and parameter estimation. The simulation results show that the DenseNetbased airborne radar moving target detection method proposed can detect the target effectively, and estimate its distance, Doppler frequency, and other parameters. Compared with the conventional space time adaptive processing method, the proposed method can significantly reduce the number of needed training range samples. Compared with the existing target detection method based on classification, the proposed method can improve the accuracy of target detection and parameter estimation effectively.

    参考文献
    相似文献
    引证文献
引用本文

李贵锋, 童宁宁, 冯为可, 刘成梁.基于DenseNet的机载雷达动目标检测[J].空军工程大学学报,2021,22(2):83-90

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2021-05-26
  • 出版日期: