欢迎访问《空军工程大学学报》官方网站!

咨询热线:029-84786242 RSS EMAIL-ALERT
基于置信规则库的锂电池SOC估计
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TM912

基金项目:


SOC Estimation of Lithium Battery Based on Belief Rule Base
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    电池荷电状态(SOC)的准确估计在电池广泛应用的背景下日益重要,但是构建精确的物理模型十分困难,使用纯粹的数据驱动方法又容易因为电池个体差异性出现过拟合问题。针对这些问题,提出基于置信规则库(BRB)的方法对锂电池SOC的进行估计。该方法既允许专家通过经验知识克服数据驱动方法的过拟合问题,又能通过参数训练克服专家知识的不准确性。以某型磷酸铁锂(LiFePO-4)电池为例,对提出的方法进行了验证,并将其与神经网络进行了对比。结果表明,该方法估计SOC具有较高的精度,估计误差不超过10%,且可以克服传统神经网络方法存在的过拟合问题。

    Abstract:

    The accurate estimation of the state of charge (SOC) of a battery is increasingly important in the context of the wide application of batteries. However,it is difficult to build accurate physical models,and the use of pure datadriven methods is prone to overfitting problems due to individual differences of batteries. To solve these problems,propose a method based on belief rule base (BRB) to estimate SOC of lithium battery. This method allows experts to overcome the overfitting problem of datadriven methods through empirical knowledge and the inaccuracy of expert knowledge through parameter training. A lithium iron phosphate (LiFePO-4) battery is taken as an example to verify the proposed method,and the results are compared with those of the neural network. The results show that this method has high accuracy in SOC estimation,the estimated error is not more than 10%,and can overcome the overfitting problem of traditional neural network methods.

    参考文献
    相似文献
    引证文献
引用本文

吕延卓,肖明清,唐希浪,李剑峰,刘强,王联科.基于置信规则库的锂电池SOC估计[J].空军工程大学学报,2019,20(4):39-45

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2019-10-23
  • 出版日期: