欢迎访问《空军工程大学学报》官方网站!

咨询热线:029-84786242 RSS EMAIL-ALERT
基于复杂网络理论的飞行冲突关键点识别
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

V355;X951

基金项目:


An Identification of Flight Conflict Key Nodes Based on Complex Network Theory
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对目前空域内航空器防相撞风险骤增,飞行安全态势不容乐观的现状,现有的飞行冲突探测方法难以把握如此复杂的空中冲突态势,不利于航空管制员对空域的飞行安全态势情况进行准确掌控。提出一种基于复杂网络理论的飞行冲突关键点识别方法。首先基于航空器机载防相撞系统(ACAS)保护区模型构建飞行冲突态势网络模型,在此基础上,采用复杂网络理论中的节点度中心性、接近中心性以及PageRank指标结合AHP方法对空域飞行冲突态势网络中所有节点的冲突等级进行评估,找出威胁等级较高的关键航空器及关键位置。仿真结果表明,通过建立飞行冲突态势网络可以合理划分空域内的安全态势等级,同时根据复杂网络节点重要度评价指标能够对存在严重冲突安全威胁的航空器进行有效识别,协助航空管制员全面掌握空域内飞行安全态势。

    Abstract:

    Aimed at the problems that the risk of collision between military and civil aviation in the airspace is increasing sharply, the current flight conflict detection methods are difficult to grasp the overall conflict situation in the airspace, and the controllers fail to make accurate judgment of different conflict situations, a method for identifying flight conflict key nodes based on complex network theory is proposed. Firstly, a flight conflict situation network model is built based on ACAS protected area model. Then the importance of all conflict nodes is evaluated based on the centrality of node degree and closeness, PageRank in complex network theory and AHP method to evaluate nodes’ conflict levels. And the key aircraft and locations with high threat levels are found. The simulation results show that the level of security situation in the airspace can be divided reasonably by establishing the flight conflict situation network. Simultaneously, according to the evaluation index of node importance of complex network, aircraft with serious conflict security threats can be effectively identified to assist air traffic controllers to fully grasp the flight safety situation in the airspace.

    参考文献
    相似文献
    引证文献
引用本文

刘飞,余敏建,李佳威,温祥西,李双峰.基于复杂网络理论的飞行冲突关键点识别[J].空军工程大学学报,2019,20(4):19-25

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2019-10-23
  • 出版日期: