欢迎访问《空军工程大学学报》官方网站!

咨询热线:029-84786242 RSS EMAIL-ALERT
改进MOQPSO算法的多平台多武器火力分配
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

V247

基金项目:

中国博士后科学基金(2014M562630)


A Method of Firepower Assignment with MultiLaunchers and MultiWeapons Based on Improved MOQPSO Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对多目标粒子群优化算法在求解火力分配过程中容易陷入局部最优的问题,提出一种改进的多目标量子粒子群优化(Multi Objective Quantum Behaved Particle Swarm Optimization, MOQPSO)算法。通过改进编码方式、修改位置更新公式、引入高斯变异和更新外部档案等方法,使该算法适于求解多平台多武器火力分配多目标优化模型。对规模不同的2个作战想定分别采用改进MOQPSO算法和MOPSO算法进行求解。对多目标优化与单目标优化模型的收敛性能进行了比较。仿真结果表明:改进MOQPSO算法比MOPSO算法运算速度提高6倍左右,所求Pareto解的收敛精度更高、多样性更好,验证了所提算法的有效性和优越性。

    Abstract:

    Aimed at the problem that the multi objective particle swarm optimization algorithm in finding the solution easily gets into the local optimum by using the MOPSO algorithm to deal with the weapon target assignment, an improved multi objective quantum behaved particle swarm optimization (MOQPSO) algorithm is proposed. First, the improved MOQPSO algorithm is applied in solving the optimization model of firepower assignment with multilauncher and multiweapon by adjusting encode mode, modifying the position update formulas, introducing Gaussian mutation, and updating the external archives. Next, the improved MOQPSO and MOPSO algorithm are adopted to solve two battle suppositions with different scale. Finally, the convergence of the multiobjective optimization model is compared with that of the single objective optimization model. The simulation results indicate that the computation speed of the improved MOQPSO is about six times faster than that of the MOPSO, and the convergence of the Pareto solutions is high in precision and the diversity is even more, and the effectiveness and superiority of the improved MOQPSO algorithm are verified.

    参考文献
    相似文献
    引证文献
引用本文

彭广,方洋旺,柴栋,彭维仕.改进MOQPSO算法的多平台多武器火力分配[J].空军工程大学学报,2016,17(5):25-30

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2016-11-02
  • 出版日期: