欢迎访问《空军工程大学学报》官方网站!

咨询热线:029-84786242 RSS EMAIL-ALERT
基于改进遗传模拟退火算法的测试优化选择
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TN06

基金项目:

航空科学基金(20142896022)


An Optimal Test Selection Based on Improved Genetic Simulated Annealing Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对测试优化选择这一NPhard问题,提出利用改进遗传模拟退火算法对其进行求解。由于遗传模拟退火算法直接应用在测试优化选择问题时,存在算法运行到后期时搜索过程冗长和交叉操作后父代与子代的染色体相似度高的缺点。因此采用非线性加速适应度函数提高搜索速度,同时在交叉操作前先对基因进行比较,剔除无效交叉以提高交叉有效性。最后,对典型实例(超外差接收器系统)进行测试优化选择,结果表明,优化后的遗传模拟退火算法达到收敛所需代数相比于遗传模拟退火算法减少13.3%;在满足故障检测率和隔离率的要求下,所需的测试代价与其它算法所得相比较小。因此优化后的遗传模拟退火算法可以更有效地解决测试优化选择问题。

    Abstract:

    Aimed at the NPhard problem in the optimal test selection (OTS), this paper proposes to utilize the genetic simulated annealing algorithm for solving. To solve the problems that the large timeconsuming of searching process and the inefficient crossover operation exist in GASA algorithm, the paper firstly uses a nonlinear accelerating fitness function to improve the searching speed, and simultaneously compares genes before crossover operation to reject the invalid cross operation, so the effectiveness of the algorithm is improved. And the proposed algorithm is applied in the superheterodyne receiver system. The simulation results show that the iterative numbers of convergence are less 13.3% in OGASA than that in GASA. Meanwhile, the OGASA algorithm can meet the acquirements of testability and fault isolation rate. The testing cost of the algorithm is less than that of others. So the OGASA algorithm is more effective in solving OTS problem.

    参考文献
    相似文献
    引证文献
引用本文

代西超,南建国,黄雷,黄金科,张超.基于改进遗传模拟退火算法的测试优化选择[J].空军工程大学学报,2016,17(2):70-75

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2016-05-06
  • 出版日期: