摘要:针对动态选择集成算法存在当局部分类器无法对待测样本正确分类时避免错分的问题,提出基于差异聚类的动态SVM选择集成算法。算法首先对训练样本实施聚类,对于每个聚类,算法根据精度及差异度选择合适的分类器进行集成,并根据这些分类器集成结果为每个聚类标定错分样本区,同时额外为之设计一组分类器集合。在测试过程中,根据待测样本所属子聚类及在子聚类中离错分样本区的远近,选择合适的分类器集合为之分类,尽最大可能的减少由上一问题所带来的盲区。在UCI数据集上与Bagging-SVM算法及文献[10]所提算法比较,使用该算法在保证测试速度的同时,能有效提高分类精度。