欢迎访问《空军工程大学学报》官方网站!

咨询热线:029-84786242 RSS EMAIL-ALERT
飞机多学科设计优化中改进的径向基神经网络法
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

V22

基金项目:

国家自然科学基金资助项目(10377015)


An Improved Radial Basis Function Neural Network Method in Aircraft Multidisciplinary Design Optimization
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    用径向基神经网络方法构造近似模型常常难以满足精度要求,提出了一种把二次响应面与径向基神经网络相结合的算法。该方法在样本点相同的情况下减小了近似模型的推广误差,提高了近似精度,增加了适应性。通过2个算例表明该算法提高了近似模型的精度,可在多学科设计优化中提高设计效率和质量。

    Abstract:

    The paper presents an algorithm combining square response surface and Radial Basis Function Neural Network (RBFNN) to solve the problem that RBFNN is often difficult to meet the precision request of approximation model. By using this method the extended error of the approximation model is diminished, the approximation precision is improved, and the flexibility is enhanced based on having the same sample points. Two numerical examples indicate that the method is effective in increasing the approximation precision and can be used to increase the design efficiency and quality in multidisciplinary design optimization (MDO).

    参考文献
    相似文献
    引证文献
引用本文

张健,李为吉.飞机多学科设计优化中改进的径向基神经网络法[J].空军工程大学学报,2006,(4):1-3

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2015-11-24
  • 出版日期: